A recent Scientific Reports article by Shing-Hong Liu and colleagues demonstrates a technique to estimate gait parameters using sEMG signals and machine learning models like Random Forest, CatBoost, and XGBoost. Their work uses 5-fold cross-validation and detailed feature extraction to assess muscle fatigue, offering a practical approach for real-time health monitoring in wearable devices.
Q&A
- What is sEMG?
- How are gait parameters estimated?
- Why is model size important in this research?