A recent Scientific Reports article by Shing-Hong Liu and colleagues demonstrates a technique to estimate gait parameters using sEMG signals and machine learning models like Random Forest, CatBoost, and XGBoost. Their work uses 5-fold cross-validation and detailed feature extraction to assess muscle fatigue, offering a practical approach for real-time health monitoring in wearable devices.

Q&A

  • What is sEMG?
  • How are gait parameters estimated?
  • Why is model size important in this research?
Copy link
Facebook X LinkedIn WhatsApp
Share post via...


Read full article