In a 2025 study, Eva Paddenberg-Schubert and her team applied machine learning—including Random Forest, CART, and GLM—to cephalometric data from German orthodontic patients. Their models achieved up to 0.99 accuracy in distinguishing skeletal class I from III, demonstrating the benefits of AI-driven diagnostics in clinical practice.

Q&A

  • What is cephalometric analysis?
  • How do machine learning models improve diagnosis?
  • Why use multiple machine learning models in this study?
Copy link
Facebook X LinkedIn WhatsApp
Share post via...


Read full article