Researchers at Sultan Qaboos University's College of Medicine and Health Sciences use the MAIRS-MS questionnaire to evaluate medical students' AI readiness following preclinical exposure, revealing moderate preparedness overall yet significant gaps in cognition, particularly in AI terminology and data science.

Key points

  • Students scored lowest in the cognition domain (mean=3.52), reflecting gaps in AI terminology and data-science knowledge.
  • Vision domain achieved the highest score (mean=3.90), indicating strong ability to anticipate AI’s applications, risks, and limitations.
  • No statistically significant differences in overall AI readiness were found based on gender or prior exposure to AI topics.

Why it matters: Assessing and improving AI readiness among medical students highlights crucial training gaps and guides curriculum enhancements for future healthcare innovations.

Q&A

  • What is the MAIRS-MS questionnaire?
  • Why focus on preclinical AI exposure?
  • What do the cognition and vision domains measure?
  • How reliable are the survey results?
Copy link
Facebook X LinkedIn WhatsApp
Share post via...


Read full article
Assessing medical students' readiness for artificial intelligence after pre-clinical training