www.techentfut.com


Researchers at Tianjin University, Cortical Labs, and Musk’s Neuralink have pioneered biological neural networks by culturing neurons on microelectrode arrays and integrating them with digital interfaces. Leveraging neuronal plasticity, systems like MetaBOC use organoids to control robotic functions, while CL1 provides a commercial wetware platform. This biohybrid approach reduces energy consumption and promises adaptive, human-like intelligence in fields from robotics to medical diagnostics.

Key points

  • MetaBOC integrates human brain organoids with digital interfaces to train living neurons for robotic control
  • Cortical Labs’ CL1 platform embeds human and mouse neurons on microelectrode arrays, enabling real-time adaptive computing
  • Neuralink develops high-density brain-computer interface electrodes for bidirectional communication between cortical neurons and processors

Why it matters: Merging biological neurons with AI systems could revolutionize energy efficiency and adaptive learning, shifting paradigms in computing and robotics.

Q&A

  • What is a biological neural network?
  • How does synaptic plasticity enable learning?
  • What ethical concerns arise with using living neurons?
  • What are the main technical challenges in biohybrid interfaces?
Copy link
Facebook X LinkedIn WhatsApp
Share post via...
biological neural networks