danacoustic.sk


Researchers from institutions like NIH and the Human Brain Project develop wetware systems harnessing DNA, proteins, and neural networks for computation. By engineering genetic circuits and advanced neural interfaces, they achieve direct brain-computer integration and neuromorphic processing, promising breakthroughs in neuroprosthetics, adaptive AI, and energy-efficient computing.

Key points

  • Engineered DNA-based logic circuits perform parallel biochemical computations via strand hybridization and enzymatic reactions.
  • Biocompatible neural interfaces transduce electrical signals from neurons into digital data streams for direct brain-computer communication.
  • Neuromorphic architectures using cultured neural networks and protein logic gates mimic synaptic plasticity, achieving adaptive, energy-efficient processing.

Why it matters: Wetware computing bridges biological and digital systems, offering self-adaptive, energy-efficient AI and precise neuroprosthetic therapies beyond conventional silicon-based technologies.

Q&A

  • What is wetware computing?
  • How do genetic circuits perform computation?
  • What challenges exist in integrating biological and electronic systems?
  • What ethical considerations surround wetware development?
Copy link
Facebook X LinkedIn WhatsApp
Share post via...
Wetware: The Next Frontier in Human-Tech Integration