We’re Evolving—Immortality.global 2.0 is Incubating
The platform is in maintenance while we finalize a release that blends AI and longevity science like never before.

May 26 in Longevity and AI

Gathered globally: 5, selected: 4.

The News Aggregator is an artificial intelligence system that gathers and filters global news on longevity and artificial intelligence, and provides tailored multilingual content of varying sophistication to help users understand what's happening in the world of longevity and AI.


Govcap’s research team has delineated seven high-potential sectors within the rapidly expanding longevity market, using market size projections, CAGR data, and profiles of key players. Their analysis encompasses geroscience, regenerative medicine, AI in drug discovery, personalized wellness tech, AgeTech solutions, financial services for aging populations, and premium concierge clinics, equipping investors with actionable insights.

Key points

  • Geroscience & senolytics: $4.13B to $6.39B market by 2030 (CAGR 7.6%), targeting cellular anti-aging interventions.
  • Regenerative medicine & gene therapies: Projected growth from $168B to $249B by 2034 (CAGR 19.2%), driven by CRISPR and stem cell platforms.
  • AI in longevity drug discovery: Market expansion from $1.48B to $15.5B by 2032 (CAGR ~29.9%), leveraging data-driven R&D acceleration and NVIDIA hardware.

Q&A

  • What is geroscience?
  • What are senolytics?
  • How does CAGR relate to market projections?
  • What is AgeTech?
Copy link
Facebook X LinkedIn WhatsApp
Share post via...

Researchers at Central South University employ an extended UTAUT framework, integrating perceived trust and risk variables, to quantify factors that shape behavioral intentions toward AI-powered health assistants, shedding light on strategies to enhance user adoption in digital healthcare.

Key points

  • Extended UTAUT model integrating trust and risk explains 88.7% of variance in behavioral intention.
  • Covariance-based SEM confirms performance expectancy, effort expectancy, social influence, and trust as positive drivers of AI assistant adoption.
  • Perceived risk negatively impacts adoption, while facilitating conditions show no significant effect on user intention.

Why it matters: Understanding the determinants of AI health assistant adoption can streamline digital interventions and improve user engagement in remote healthcare management.

Q&A

  • What is the UTAUT model?
  • Why include perceived trust and risk?
  • How does performance expectancy differ from effort expectancy?
  • What role did facilitating conditions play?
Copy link
Facebook X LinkedIn WhatsApp
Share post via...
Investigating the factors influencing users' adoption of artificial intelligence health assistants based on an extended UTAUT model

A team from Google Research and Duke University develops gradient boosting models trained on mobile app–collected surveys, functional tests, and wearable signals to forecast high-severity MS symptoms up to three months ahead.

Key points

  • Implementation of a mobile app to capture weekly self-reported MS symptoms, bi-weekly functional tests, and wearable signals over three years.
  • Training and validation of five models (logistic regression, MLP, GBC, RNN, TCN) on 713 users, with GBC achieving AUROCs up to 0.899 on a 20% blind test set.
  • Feature ablation reveals past symptom trajectory as top predictor, while passive signals and functional tests also contribute to multi-modal forecasting.
  • Subgroup analyses demonstrate consistent predictive performance across MS subtypes and age categories.
  • Calibration via Brier scores confirms reliable probability estimates for clinical decision support.

Why it matters: Early forecasting of MS symptom flares via a scalable mobile platform could guide proactive interventions and improve patient outcomes.

Q&A

  • What data does the MS Mosaic app collect?
  • Why use gradient boosting over deep learning?
  • How is symptom severity labeled?
  • What performance metrics were achieved?
  • Can this approach apply to other chronic diseases?
Copy link
Facebook X LinkedIn WhatsApp
Share post via...
Performance of machine learning models for predicting high-severity symptoms in multiple sclerosis

An interdisciplinary team led by Hunan University of Information Technology develops a novel AI-powered blockchain framework for smart-home temperature control. The system uses machine learning to predict heating and cooling events, time-shifted edge computing to reduce peak computational loads, and blockchain to ensure immutable data logging and enable decentralized energy trading, delivering over 15% energy savings, enhanced event detection accuracy, and increased IoT security.

Key points

  • Machine learning–driven predictive scheduling using historical WSN data delivers a 15.8% reduction in heating energy consumption and accurate radiator event forecasts.
  • Edge computing with time-shifted analysis shifts non-critical processing to off-peak periods, cutting peak computational loads by 22% and enhancing system responsiveness.
  • Permissioned blockchain logs sensor readings and energy trades, enabling tamper-proof data security and decentralized peer-to-peer energy trading within the smart-home network.

Why it matters: This AI–blockchain integration paves the way for secure, scalable smart-home systems that cut energy use and could redefine IoT energy management paradigms.

Q&A

  • What is time-shifted data processing?
  • How does blockchain improve smart-home security?
  • Which machine learning models power predictive temperature control?
  • What role do wireless sensor networks play?
Copy link
Facebook X LinkedIn WhatsApp
Share post via...
AI powered blockchain framework for predictive temperature control in smart homes using wireless sensor networks and time shifted analysis